Protein grafting of p53TAD onto a leucine zipper scaffold generates a potent HDM dual inhibitor
Journal
Nature Communications
Date
2014.05.07
Abstract
Reactivation of the p53 pathway by a potential therapeutic antagonist, which inhibits HDM2 and HDMX, is an attractive strategy for drug development in oncology. Developing blockers towards conserved hydrophobic pockets of both HDMs has mainly focused on small synthetic compounds, however, this approach has proved challenging. Here we describe an approach to generate a potent HDM dual inhibitor, p53LZ2, by rational protein grafting of the p53 transactivation domain onto a homodimeric leucine zipper. p53LZ2 shows tight binding affinity to both HDMs compared with wild-type p53 in vitro. X-ray crystallographic, comparative modeling, and small-angle X-ray scattering studies of p53LZ2-HDM complexes show butterfly-shaped structures. A cell-permeable TAT-p53LZ2 effectively inhibits the cancer cell growth in wild-type but not mutant p53 by arresting cell cycle and inducing apoptosis in vitro. Thus, this p53LZ2 designed by rational grafting shows a potential therapeutic approach against cancers.